Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Microbiol Immunol Hung ; 70(2): 111-118, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2317543

ABSTRACT

Following the introduction of the West Nile virus (WNV) into Hungary in 2004, it has shortly become one of the most important human arbovirus infections, with a gradually increasing number of cases. The study aimed to summarize the current epidemiological situation in Hungary and sequence the WNV PCR-positive clinical specimens and virus isolates by next-generation whole genome sequencing (NGS) to obtain a detailed phylogenetic analysis of the circulating virus strains. Whole blood and urine samples from confirmed WNV-infected patients and WNV isolates were investigated by reverse transcription PCR assays. Genome sequencing was carried out by Sanger-method, followed by NGS on the Illumina MiSeq platform. Altogether 499 human infections were diagnosed between 2004 and 2022. A particularly remarkable increase in human WNV infections was observed in 2018, while the number of reported cases significantly decreased during the COVID-19 pandemic. Between 2015 and 2022, 15 WNV isolates, and 10 PCR-positive clinical specimens were investigated by NGS. Phylogenetic analysis revealed that the major European WNV lineage 2 clades, namely the Eastern European (or Russian) and the Central European (or Hungarian) clades, are presented in Hungary. Strains of the Balkan and other European clusters within the Central European clade are co-circulating in the country, following a characteristic geographical distribution. In Hungary, the presence and co-circulation of multiple lineage 2 WNV strains could be identified in the last few years. Therefore, in light of the 2018 WNV outbreak, sequence-based typing of the currently circulating strains could highly support outbreak investigations.


Subject(s)
COVID-19 , West Nile Fever , West Nile virus , Humans , West Nile Fever/epidemiology , Phylogeny , Hungary/epidemiology , Pandemics , COVID-19/epidemiology , West Nile virus/genetics
2.
J Water Health ; 20(2): 277-286, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-2117661

ABSTRACT

Wastewater-based epidemiology (WBE) is a recognised tool for tracking community transmission of COVID-19. From the second half of 2020, the emergence of new, highly infective, more pathogenic or vaccine-escape SARS-CoV-2 variants is the major public health concern. Variant analysis in sewage might assist the early detection of new mutations. Weekly raw sewage samples from 22 wastewater treatment plants (WWTPs) in Hungary (representing 40% of the population) were analysed between December 2020 and March 2021 for signature mutations N501Y and del H69/V70 of B.1.1.7 lineage by melting point genotyping and RT-digital droplet PCR (RT-ddPCR). The latter method proved to be more efficient in parallel detection of different variants and also provides quantitative information. Wastewater surveillance indicated that the B.1.1.7 variant first emerged in Budapest in early January 2021 and rapidly became dominant in the entire country. Results are in close agreement with the available clinical data (Pearson's correlation coefficient, R = 0.9153). RT-ddPCR was confirmed to be a reliable tool for tracking emerging variant ratios in wastewaters. It is a rapid and cost-effective method compared to whole-genome sequencing, but only applicable for the detection of known mutations. Efficient variant surveillance might require the combination of multiple methods.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , Sewage , Hungary/epidemiology
3.
Sci Total Environ ; 786: 147398, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1221024

ABSTRACT

Wastewater based epidemiology is a potential early warning tool for the detection of COVID-19 outbreak. Sewage surveillance for SARS-CoV-2 RNA was introduced in Hungary after the successful containment of the first wave of the pandemic to forecast the resurge of infections. Three wastewater treatment plants servicing the entire population (1.8 million) of the capital, Budapest were sampled weekly. 24 h composite (n = 44) and grab samples (n = 21) were concentrated by an in-house flat sheet membrane ultrafiltration method. The efficiency and reproducibility of the method was comparable to those previously published. SARS-CoV-2 RNA was quantified using RT-qPCR of the N gene. The first positive signal in sewage was detected 2 weeks before the rise in case numbers. Viral concentration and volume-adjusted viral load correlated to the weekly new cases from the same week and the rolling 7-day average of active cases in the subsequent week. The correlation was more pronounced in the ascending phase of the outbreak, data was divergent once case numbers plateaued. Wastewater surveillance was found to be effective in predicting the second wave of the outbreak in Hungary. Data indicated that even relatively low frequency (weekly) sampling is useful and at the same time, cost effective tool in outbreak detection.


Subject(s)
COVID-19 , Wastewater , Humans , Hungary , RNA, Viral , Reproducibility of Results , SARS-CoV-2
4.
Orv Hetil ; 161(38): 1619-1622, 2020 09.
Article in Hungarian | MEDLINE | ID: covidwho-760743

ABSTRACT

INTRODUCTION: In Hungary, SARS-CoV-2 was first detected in the swab samples of two Iranian patients on March 4, 2020. After finding the first positive cases, the question arose whether the virus had entered Hungary and caused infections before this date. Before March 4, 2020, except for the two above-mentioned samples, none of the 224 swab samples received specifically for SARS-CoV-2 tested positive. AIM: The National Reference Laboratory for Respiratory Viruses of the National Public Health Center aimed to carry out a retrospective study of the swab and other samples taken for testing respiratory virus infections between January 1, and April 19, 2020 sent by sentinel physicians within the influenza surveillance for diagnostic purposes. METHOD: For the study, we used swab samples taken weekly by sentinel physicians of the influenza surveillance service, and other samples received for diagnostic purposes. Tests were performed using real-time PCR. RESULTS: All the 465 swab samples sent by sentinel physicians were found to be SARS-CoV-2 negative. Also, of the 551 samples collected for diagnostic reasons of other respiratory viruses, no SARS-CoV-2 positive was found among those taken before March 4. CONCLUSION: Based on our data, it is very likely that prior to the first cases diagnosed on March 4, 2020, SARS-CoV-2 did not cause clinically symptomatic infections in Hungary. Orv Hetil. 2020; 161(38): 1619-1622.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Hungary/epidemiology , Iran , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL